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AbsLT3~1. The ~nfinitc-1' Hubbard model on finite two-dimensional square l x t i ~ e r  IS inter- 
ligated b) the uss ofekact nimerical diagonalizat~on. Cinliguraiionruith onespin tlipa.ra) 
from the ferroma~nei.c 5 1 3 1 ~  and up to three holes 3rc siudied for laltlce sizes ranging irom 
4 x 4 to I? x 12. For all 1hew ,itualions. the 1131~ uith une sp.n Rip is found to be more 
stable than the Nsgaoks fcrromagnetanale. Thecr),tal momentumof 1hc groundsnte m 
tnis spin sector depends on the ,)mm size. S)itema:ic comparson u,ith !ne G u w d l c r  
na\efuncrion shows that 11 reprodice,qu~lltari,el) tne crpral momentum dependence of 
lne energy. but no1 the CAJCI correlmion berueen rhe spin Rip and thd holes 

1. Introduction 

Much attention hasbeen devoted recently to the problemof strongly interacting fermions 
on a lattice [l, 4. The use of standard perturbation methods is difficult here owing to 
the absence of an obvious small expansion parameter. In this situation, numerical 
techniques provide useful information on the properties of such strongly interacting 
models [3]. More specifically, we present in this paper an exact diagonalization study of 
theHubbardmodelin theinfinite-interacrionlimit. Inthislimit, thereisnoenergyscale, 
and the problem reduces to pure geometry via the non-double-occupancy constraint. 
The only parameter in the model is then the concentration of mobile vacancies. In the 
limit of a small electron concentration, the effect of hard-core repulsion is expected to  
be small and a singlet ground state is obtained [4]. In the opposite limit, where only one 
vacancy ispresent, it has been shown rigorously [5] that the ground state has the maximal 
total spin value on any bipartite lattice. The behaviour of the total spin in the ground 
state as a function of the hole density i s  still an unsettled question. Recent numerical 
diagonalizations have shown that on a finite system this quantity bas a non-monotonic 
variation as the number of holes is ihcreased [6]. This illustrates the importance of finite 
size effects in this limit. The origin of this sensitivity to the exact number of holes or 
ooundary conditions comes from the very large number of low-lying states, in the 
presence of a small number of holes. 

At finite hole densities, the instability of the Nagaoka ferromagneticstate has been 
recently investigated by variational calculations [7,8]. They indicate that a finite critical 
Concentration is required in order to destabilize the fully polarized state. In [8] a twisted 

3973 0953-8984/91/223973 + 09 $03.50 0 1991 IOP Publishing Ltd 



3974 

static spin background has been considered whereas in [7] the Gutnviller wavefunction 
with one spin flip is used. 

In this paper. we shall restrict ourselves to the spin sector corresponding to a single 
spin flip away from the ferromagnetic state. This allows us to reach a larger lattice size 
than for the sector which contains the absolute ground state. For two holes, diag- 
onalizations were performed for a lattice as large as 12 x 12 while, for three holes, the 
larger size was 7 X 7. First, a brief description of the method is presented. We then 
present our results for two holes and three holes. Comparison between exact diag- 
onalization and the Gutzwiller wavefunction is detailed. We conclude by discussing 
the effect of a small nearest-neighbour antiferromagnetic exchange interaction on the 
ground-state quantum numbers. 

J C A n g h  d'Auriac et a1 

2. Method 

In this paper, we shall study the U = = Hubbard model on a two-dimensional periodic 
square lattice. The Hamiltonian is 

Here i is the hopping matrix element chosen to be equal to unity. The sum runs over 
nearest-neighbour sites and spin indices. In equation (1) the constraint of non-double 
occupancy is enforced by projectors. In what follows, a systematic comparison between 
exact diagonalization and resultsfor the Gutzwiller wavefunction will be presented. For 
one spin flip and n up spins, the Gutzwiller wavefunction isgiven by [9] 

IV") = PGc;I d, T , . .C.t,t 10) 

P,=l  - x n n , , n , r .  (3) 

(2) 
where PG = n, (1 - n, r n , i )  removes the doubly occupied sites. In the case of one spin 
flip, PG can be rewritten as 

Using (2) and (3), the average kinetic energy is given by [7,10] 

Here Nh = N ,  - ( n  + 1) is the number of holes, N ,  being the total number of lattice sites 
( N s  = Lz, whereLis thelinearsizeofthesystem).Thefree-particlecncrgiesaredenoted 
by ~ ( k )  = -2(cos k, + cos ky) .  Furthermore, 

C, = cos kp 
h'h 

, = I  
N b  

S, = 2 sin kp. 
( 5 )  

1'1 

In equation (S), the sum is over unoccupied states. This wavefunction is an eigenstate 
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Table 1. Lowest eigenenergy as a function Of tOLdl momentum for L = 8 and two holes. The 
reciprocal space of the square lattice is displayed in the domain 0 6 k, S k, S x. Because of 
discrete symmetries of the lattice, all the eigenvalues are represented in this domain. The 
lower part of the table shows the results for Gutnviller wavefunctions. without subtracting 
possible ferromagnetic components. If such corrections are required, the resulting values 
are shown as footnotes. 

Exact 
-7.41542 

-7.41930 -7.41918 
-7.42535 -7.42666 -7.42798 

-7.41825 -7.42918 -7.43515 -7.43642 
-7.41722 -7.41273 -7.43191 -7.43867 -7.43982 

-7.251 99 
-7.24336 -7.25199 

-7,23621 -7.24231 -7.25199 

Gutzwiller 

-7.21895b -7,22758 -7.24231 -7.25199 
-7.201693' -7.21032 -7.21895 -7.24231 -7.25199 

-7.373448. 
-7.386605. 

of the total spin operator only if p is equal to one of the occupied states k , ,  . . . , k, for 
the up spins. Otherwise, it is possible to obtain a state with a total spin corresponding to 
its maximal value reduced by unity. This is done by projecting out the ferromagnetic 
component in the original Gutzwiller wavefunction. The kinetic energy becomes 

(E ' )  = ( E )  -k {Ns/[/[Ns - ( N b  + 1)1Nh}((E) - EF). (6) 
Inthisequation,(E)istheaverage kineticenergyof theoriginalGutzwillerwavefunction 
given by (4). and EF is the energy of the ferromagnetic component: 

n 

.Ei = E @ )  + E(ki). (7) 
,=I 

It is convenient to use a representation of these wavefunctions as a function of hole and 
down-spin coordinates, denoted by ( x ~ , .  . . , x N h )  and y ,  respectively. For the original 
Gutzwiller wavefunction, we have [Ill: 

@is the Slater determinant constructed fromp and the unoccupiedstates k , ,  k, .  . . ., k,. 
In the case where p is one of k , ,  , , ., k N h ,  after subtraction of the ferromagnetic 
component, the wavefunction becomes 

These real-space wavefunctions have been used to calculate numerically various cor- 
relation functions involving the spin flip and holes. 
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Table 2. As for table 1 but for L = 9 and two holes 

Exact 

-7.53485 
- 7.524 47 -7.52909 

-7.50193 -7.52169 -7.528 13 

Gutzwiller 

-7.52022 
-7.509114 -7.51503 

-7.50306" -7.50645 ~ -7.51164 

-7.550ho 
-7.54468 -7.54750 
-7.53919 -7.54191 
-1.53289 -7.53491 
-7.53291 -7.53496 

-7.53294 
-7.52934 -7.531 14 
-752478 -7.52658 
-7.51959 -7.52139 
-7.51620 -7.51800 

*7.495549, 

Table 3. As for table I but for L = IO and two holes. 

Exact 

-7.61785 
- 7.622 27 -7.62 1 3 1 

- 7.6 19 80 - 7.623 63 -7.624 68 
-7.61817 -7.61596 -7.62451 -7.62606 

Gutzwiller 

-7.49895 
-7.49386 -7,49641 

-7.48247' -7.48502 -7.48817 -7.49513 
- 7 . 4 8 7 ~  -7.49071 -7,49513 

-7.61261 
-7.61598 
-7.62022 
-7.62369 
-7.62502 

-7.50229 
-7.50229 
-7.50229 
-7.50229 
-7.50229 

-7.61078 
-7.61209 
-7.61550 
-7.61964 
-7.622 30 
-7.62425 

-7.sos02 

-7.50502 
-7.50502 

-7.50502 
-7.50502 
-7.50502 

" -7.6W292. 
-7.605336. 

The diagonalizations were performed on a four-processor IBM 3090. We used the 
Lanczos [ 121 method to tri-diagonalize the Hamiltonian matrix. The parallelization of 
this algorithm is not difficult [13, 141. The final diagonalization is achieved by direct 
resolution. refined by several power method steps. To find eigenvectors with a given 
total momentum and a given spin, we ran the Lanczos method starting from random 
state with these valuesofmomcntum andspin [14]. It turnedout that the round-offerror 
does not project the iteration out of this subspace, and the lowest eigenstate of a 
1,462032 X 1.462032 matrix is found in less than 100 iterations. 

3. Results 

We now turn to the description of our numerical results. For two holes, they are 
summarized in tables 1-4, for energies as a function of total momentum and for various 
lattice sizes. The results for average distances are detailed in table 5. 
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Table 4. As for table 1 but for L = 12 and two holes. 

Exact 

-7.73183 

-7.640253b 
-7.638431' -1.639345 

- 7 . 7 ~ 7 8  
-7.13203 

Gutzwiller 
-7.64984 

-7.648892 - 7 . ~ 9 8 4  
-7.647032 -7.648892 - 1 . r ~ ~  

-7.645215 -7.647032 -1.648892 -7,64984 
-7.642134 - 1.643 975 -7,641 032 -7.648892 - 1.649 84 
-7.641494 -7.642734 -7.647032 -7.648892 -7.64984 
-7.640586 -7.642734 -7.647032 -7.648892 -7.649% 

-7.123210. 
-7.726455. 

t 

Table 5. Distances d,,,,, between the down spin and the closest hole for various lattice sizes 
(L = 8, 9, 10, 12). For comparison. d,, is the average distance between two points on a 
periodicsquare lattice. d ,  isobtained by taking the same correlations between the two holes 
as in the exact ground state but with assuming that the down spin is uniformly distributed. 
dc.,2 is the result for the usual Gutzwiller wavefunction. whereas d&,, is obtained by 
subtracting the ferromagnetic component from the Gurnviller wavefunction. 

L = 8  L = 9  L = l O  L = 12" 

d,, 4.0635 4.5 5.0505 6.0419 
d ;  2.9931 3.3495 3.1191 4.6266 
d,,, 2.9486 3.5419 3.1657 4.7510 
dc.,, 2.8114 3.4076 3.4852 4. I635 
db.,, 3.0159 3.4016 3.7662 1.5205 

K = (O.O).(O,n).[n.n)only. 

First it is worth stressing that the state with one spin flip and two holes has a lower 
energy than the Nagaoka ferromagnetic state for two holes. This is consistent with 
previous analyses [6, lo]. However, the value of the total momentum turns out to be 
sensitive to the parity of L and to the actual size for a given number of holes. By contrast, 
Fang et a1 [lo] claim that the ground state is achieved for k = (0, z) or (z, 0) for two 
holes and even L. We have recovered their results with a relative accuracy of for 
the values of k and L that they have investigated. However, they do not seem to have 
included the values of k corresponding to the actual ground state. For instance, for 
L = 10, we find that k = (0,3z/5). 

For odd L ,  the ground state is fourfold degenerate, corresponding to the values of k 
which are the closest to (z, z) in reciprocal space. The dispersion of E(k) is also larger 
for L = 9 than L = 8 and L = 10 which suggests that it is the case for odd L versus even 
L. The origin of such different behaviours when the parity of L changes is the presence 
of frustration in the hopping motion of the holes. That is, the ground state of one hole 
in a ferromagnetic background is fourfold degenerate when L is odd. 
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Table 6. As for table 1 but for L = 5 and three holes. 

Exact 
-9.60913 

-9.89698 -9.77652 
-ia.00694 -9.94828 -9.811 17 

Gutnviller 
-9,52932 

-9,77653 -9.65292 
-9.92932 -9.85292 -9 72932 

We have compared these exact results with the Gutzwiller wavefunction. For 
L = 9, the Gutzwiller wavefunction reproduces exactly the ordering of energies as a 
function of total momentum k. For L = 8, 10 and 12 the energy of the Gutmiller 
wavefunction is minimal at k = (x, (2x/L)m), with an arbitrary value of the integer m. 
Then the ordering of energies is rather poorly reproduced by the Gutzwiller wave- 
function which exhibits many degeneracies. We note that the relative energy difference 
from the exact ground state is less than 2%. 

Inorder toget amoredotailedcomparison, wecalculatedensitycorrelationfunctions 
between the down spin and holes. The results are featured in table 5. The main result of 
this study is that the average distance between the down spin and the closest hole is quite 
similar to the case of a uniformly distributed down spin. This strongly suggests that there 
is no actual bound state between the down spin and a hole, in spite of the fact that the 
ferromagnetic state is unstable towards one spin flip. As already mentioned [15]. for a 
finite number of holes, the energy of the actual ground state is bounded below by the 
energy Eb of hard-core bosons and above by the energy E, of spinless fermions. For 
instance, for L = IO. E ,  = -7.9530 S E = -7.6261 5 Er = -7.6180. When the system 
size goes to infinity, Er - Eb vanishes and the ferromagnetic state is degenerate with 
the actual ground state. The behaviour of the down-spin-hole correlation function is 
consistent with this absence of binding. 

The average distance between the down spin and the closest hole is found to be 
reduced in the Gutzwiller wavefunction. Furthermore, the relative error for the distance 
between the down spin and hole is 4.6% for L = 8 and 7.5% for L = 10. 

It is interesting to note that, when a ferromagnetic component is removed, this 
distance increases significantly. An example is provided for L = 12. For the original 
Gutzwiller wavefunction. the energy is lower for k = (E, (x /6)m) ,  m integer, and 
the mean distance is 4.1635, By contrast, if an exact spin eigenstate is enforced. k = 
( 4 6 ,  n/6) and the mean distance becomes 4.5205. We note that the later state has a 
lower energy, and that the mean distance in that case is closer to the exact value equal 
to 4.7510. This increase in the average distance first seems paradoxical, since removing 
the ferromagnetic component suppresses the node in the wavefunction when the down 
spin coincides with a hole. However, these two wavefunctions are constructed from a 
different set of single-particle states, and the exchange-induced repulsion is larger for 
k = (x is ,  n/6) than fork = (x, (x/6)m). This turns out to be the dominant effect. 

The results for three holes and L = 5 , 6 , 7  are summarized in tables 6-8. As for the 
two-hole cases the exact energies as a function of the crystal momentum are shown, as 
well as the energies for the Gutnviller trial wavefunctions. 
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Table 7 .  As for table 1 but for L = 6 and three holes. 
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Exact 
-9.85869 

-10.03525 -10.02090 
-10.12758 -10.08289 -10.08892 

-10.18392 -10.15391 -10.11027 -10.11764 

Gutmiller 
-9.63194 

-9.72222 -9.68056 
-9.84028 -9.81944 -9.77778 

-9.86806 -9.88889 -9.86806 -9.82639 

Table 8. As for table 1 but for L = 7 and three holes 

Exact 
-10.78191 

-10.84773 -10.82573 
-10.88577 -10.86330 -10.83647 

-10.90300 -10.89385 -10.86878 -10.84015 

Gutzwiller 
-!0.75624 

-10.79795 -10.77709 
- 10.8499 -10.82395 -10.80310 

-10.87310 -10.86152 -10.83552 -10.81467 

For odd linear size L ,  the Gutzwiller trial wavefunction is avery good approximation 
of the exact energy. For L = 7 the relative energy difference between the Gutzwiller 
wavefunction and the exact ground state is less than 0.3%. We note that the hierarchy 
of energies versus total momentum is also correct. In the Gutzwiller wavefunction, the 
four unoccupied states are the four states closest to (n, n). Their contribution to the 
total momentum is vanishing, and the total momentum is determined only by the 
momentum p of the magnon. The lowest energy is reached for k = (0, 0), while the 
highest energycorrespondsto thevalueofkwhichistheclosest to@, n). The bandwidth 
is equal to (16,”) [l + cos(n/L)J sinZ(x/L). This value is much larger than for the two- 
hole case, as can be expected [5]. For even L the situation is not so simple since 
there are several degenerate non-interacting Fermi seas to construct the Gutzwiller 
wavefunction. The wavefunction is also less accurate (2% for L = 6)  and the hierarchy 
of the different subspace is not exactly reproduced, by contrast with the case of odd L. 
As for the case of two holes, the presence of frustration for odd values of L seems to 
improve the Gutzwiller wavefunction as an approximation of the ground state. 

4. Discussion 

Oar results for finite lattices with two or three holes confirm that the ferromagnetic state 
is unstable against one spin flip. However, the total spin of the global ground state could 
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not be determined by this method. Study of the correlations between the holes and spin 
flip suggests that this instability is not related to the formation of a bound state. As was 
shown in [6], this instability depends on the choice of boundary conditions for the 
wavefunction of the holes [15]. As a result this mechanism is effective only for a finite 
number of holes. So the instability observed here appears to be a finite-size effect, 
consistent with a macroscopic magnetization in the thermodynamic limit, at small hole 
concentrations. Detailed comparison with the Gutzwiller wavefunction shows that it 
provides rather good estimates for the energy (around 1 % accuracy). Furthermore, the 
orderingof E(k) asafunctionofkis very well reproducedforfrustratedlattices(lodd). 
However, correlations between holes and spin flip are not accurately described by this 
ansatz. 

This suggests going beyond the usual Gutzwiller wavefunction in order to study the 
instability of the ferromagnetic state at finite hole densities. One way suggested to write 
the Gutzwiller wavefunction is 

J C An& d'Auriac et a1 

n 

l vO)=xs~-k ' c ,$~  nC:,tlo), 
k '  i= I 

A first possible generalization was studied in [7], which can be written as 

lv) is a Gutzwiller-projected spin-wave type of excitation of the ferromagnetic Fermi 
sea. We are at present investigating the class of wavefunctions defined by 

" t l  

Iv)= x ~ ( k , k ' ) S ~ - k ' t h c ~ ' t C k t  n cl,rlo) 
k.k' i = l  

by numerically solving the Schrodinger equation for @(k,  k ' ) .  Correlations between 
holes and magnons should be better described in this enlarged trial space. 

Another question of interest is the influence of a nearest-neighbour antiferro- 
magnetic coupling between spins. The so-called t - J model has been widely studied in 
connection with the oxide superconductors [16]. We performed similar exact diag- 
onalizations for non-zero J. Figure 1 shows the evolution of ground-state energies as a 
function ofJ for one down spin and two holes, for different valuesof k.  This graph shows 
that many level crossings occur at small values of J. Such a behaviour suggests that the 
infinite-U ground state is not adiabatically related to the ground state at finite J. As a 
result, we observe that the spin flips which may be stabilized at U = mare dramatically 
different from the antiferromagnetic state. Results for U = m may not be extrapolated 
to the large-UHubbard model. However, as the simplest strongly correlated model, the 
infinite-U limit still deserves further investigation. 
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Figure 1. Ground-state energy for different valuesofkar a function of the antiferromagnetic 
coupling constant3 -D, (0.0); -C , (0 .43 ) ;  4 (0.2xi3); 9. (0, x); *, (n/3,x/3); 
-5. (n/3.243);  +. (n/3..z): * . (2~/3.2~/31;  *. (211/3,n); +, (n,~). 
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